
UNIT-4 

 

Introduction to Nonmonotonic Reasoning 
Non-monotonic Reasoning 
The definite clause logic is monotonic in the sense that anything that could be concluded before 

a clause is added can still be concluded after it is added; adding knowledge does not reduce the 

set of propositions that can be derived. 

A logic is non-monotonic if some conclusions can be invalidated by adding more knowledge. 

The logic of definite clauses with negation as failure is non-monotonic. Non-monotonic 

reasoning is useful for representing defaults. A default is a rule that can be used unless it 

overridden by an exception. 

For example, to say that b is normally true if c is true, a knowledge base designer can write a rule 

of the form 

b ←c ∧ ∼ aba. 
where aba is an atom that means abnormal with respect to some aspect a. Given c, the agent can 

infer bunless it is told aba. Adding aba to the knowledge base can prevent the conclusion of b. 
Rules that imply abacan be used to prevent the default under the conditions of the body of the 

rule. 

Example 5.27: Suppose the purchasing agent is investigating purchasing holidays. A resort may 

be adjacent to a beach or away from a beach. This is not symmetric; if the resort was adjacent to 

a beach, the knowledge provider would specify this. Thus, it is reasonable to have the clause 

away_from_beach ← ∼ on_beach. 

This clause enables an agent to infer that a resort is away from the beach if the agent is not told it 

is adjacent to a beach. 

A cooperative system tries to not mislead. If we are told the resort is on the beach, we would 

expect that resort users would have access to the beach. If they have access to a beach, we would 
expect them to be able to swim at the beach. Thus, we would expect the following defaults: 

beach_access ←on_beach ∧ ∼ abbeach_access. 
swim_at_beach ←beach_access ∧ ∼ abswim_at_beach. 

A cooperative system would tell us if a resort on the beach has no beach access or if there is no 

swimming. We could also specify that, if there is an enclosed bay and a big city, then there is no 

swimming, by default: 

abswim_at_beach ←enclosed_bay ∧big_city ∧ ∼ abno_swimming_near_city. 

We could say that British Columbia is abnormal with respect to swimming near cities: 



abno_swimming_near_city ←in_BC ∧ ∼ abBC_beaches. 

Given only the preceding rules, an agent infers away_from_beach. If it is then told on_beach, it 

can no longer infer away_from_beach, but it can now infer beach_access and swim_at_beach. 

If it is also told enclosed_bay and big_city, it can no longer infer swim_at_beach. However, if it 

is then told in_BC, it can then infer swim_at_beach. 

By having defaults of what is normal, a user can interact with the system by telling it what is 

abnormal, which allows for economy in communication. The user does not have to state the 

obvious. 

One way to think about non-monotonic reasoning is in terms of arguments. The rules can be 

used as components of arguments, in which the negated abnormality gives a way to undermine 

arguments. Note that, in the language presented, only positive arguments exist that can be 

undermined. In more general theories, there can be positive and negative arguments that attack 

each other. 

 

Implementation Issues 

 

Weak Slot and Filler Structures 

 

Evolution Frames 

 As seen in the previous example, there are certain problems which are difficult to solve 

with Semantic Nets. 

 Although there is no clear distinction between a semantic net and frame system, more 

structured the system is, more likely it is to be termed as a frame system. 

 A frame is a collection of attributes (called slots) and associated values that describe 

some entities in the world. Sometimes a frame describes an entity in some absolute sense; 

 Sometimes it represents the entity from a particular point of view only. 

 A single frame taken alone is rarely useful; we build frame systems out of collections of 

frames that connected to each other by virtue of the fact that the value of an attribute of 

one frame may be another frame. 

Frames as Sets and Instances 

 The set theory is a good basis for understanding frame systems. 

 Each frame represents either a class (a set) or an instance (an element of class) 

 Both isa and instance relations have inverse attributes, which we call subclasses & all 

instances. 

 As a class represents a set, there are 2 kinds of attributes that can be associated with it. 

1. Its own attributes & 

2. Attributes that are to be inherited by each element of the set. 



 
Frames as Sets and Instances 

 Sometimes, the difference between a set and an individual instance may not be clear. 
 Example: Team India is an instance of the class of Cricket Teams and can also think of as 

the set of players. 

 Now the problem is if we present Team India as a subclass of Cricket teams, then Indian 

players automatically become part of all the teams, which is not true. 

 So, we can make Team India a subclass of class called Cricket Players. 

 To do this we need to differentiate between regular classes and meta-classes. 

 Regular Classes are those whose elements are individual entities whereas Meta-classes 

are those special classes whose elements are themselves, classes. 

 The most basic meta-class is the class CLASS. 

 It represents the set of all classes. 
 All classes are instances of it, either directly or through one of its subclasses. 

 The class CLASS introduces the attribute cardinality, which is to inherited by all instances 

of CLASS. Cardinality stands for the number. 

Other ways of Relating Classes to Each Other 

 We have discussed that a class1 can be a subset of class2. 
 If Class2 is a meta-class then Class1 can be an instance of Class2. 

 Another way is the mutually-disjoint-with relationship, which relates a class to one or 

more other classes that guaranteed to have no elements in common with it. 

 Another one is, is-covered-by which relates a class to a set of subclasses, the union of 

which is equal to it. 

 If a class is-covered-by a set S of mutually disjoint classes, then S called a partition of the 

class. 

Slots as Full-Fledged Objects (Frames) 

Till now we have used attributes as slots, but now we will represent attributes explicitly and 

describe their properties. 

Some of the properties we would like to be able to represent and use in reasoning include, 

 The class to which the attribute can attach. 

 Constraints on either the type or the value of the attribute. 

 A default value for the attribute. Rules for inheriting values for the attribute. 

 To be able to represent these attributes of attributes, we need to describe attributes (slots) 

as frames. 



 These frames will organize into an isa hierarchy, just as any other frames, and that 

hierarchy can then used to support inheritance of values for attributes of slots. 

 Now let us formalize what is a slot. A slot here is a relation. 

 It maps from elements of its domain (the classes for which it makes sense) to elements of 

its range (its possible values). 

 A relation is a set of ordered pairs. 

 Thus it makes sense to say that relation R1 is a subset of another relation R2. 

 In that case, R1 is a specialization of R2. Since a slot is a set, the set of all slots, which 

we will call SLOT, is a meta-class. 

 Its instances are slots, which may have sub-slots. 

Frame Example 
In this example, the frames Person, Adult-Male, ML-Baseball-Player (corresponding to major 

league baseball players), Pitcher, and ML-Baseball-Team (for major league baseball team) are all 

classes. 

 
 The frames Pee-Wee-Reese and Brooklyn-Dodgers are instances. 

 The isa relation that we have been using without a precise definition is, in fact, the subset 

relation. The set of adult males is a subset of the set of people. 

 The set of major league baseball players subset of the set of adult males, and so forth. 

 Our instance relation corresponds to the relation element-of Pee Wee Reese is an element 

of the set of fielders. 

 Thus he is also an element of all of the supersets of fielders, including major league 

baseball players and people. The transitivity of isa follows directly from the transitivity 

of the subset relation. 



 Both the isa and instance relations have inverse attributes, which we call subclasses and 

all instances. 

 Because a class represents a set, there are two kinds of attributes that can associate with 

it. 

 Some attributes are about the set itself, and some attributes are to inherited by each 

element of the set. 

 We indicate the difference between these two by prefixing the latter with an asterisk (*). 

 For example, consider the class ML-Baseball-Player, we have shown only two properties 

of it as a set: It a subset of the set of adult males. And it has cardinality 624. 

 We have listed five properties that all major league baseball players have (height, bats, 

batting average, team, and uniform-color), and we have specified default values for the 

first three of them. 

 By providing both kinds of slots, we allow both classes to define a set of objects and to 

describe a prototypical object of the set. 

 Frames are useful for representing objects that are typical of stereotypical situations. 

 The situation like the structure of complex physical objects, visual scenes, etc. 

 A commonsense knowledge can represent using default values if no other value exists. 

Commonsense is generally used in the absence of specific knowledge. 

Semantic Nets 

 Inheritance property can represent using isa and instance 

 Monotonic Inheritance can perform substantially more efficiently with such structures 

than with pure logic, and non-monotonic inheritance is also easily supported. 

 The reason that makes Inheritance easy is that the knowledge in slot and filler systems is 

structured as a set of entities and their attributes. 

These structures turn out to be useful as, 

 It indexes assertions by the entities they describe. As a result, retrieving the value for an 

attribute of an entity is fast. 

 Moreover, It makes easy to describe properties of relations. To do this in a purely logical 

system requires higher-order mechanisms. 

 It is a form of object-oriented programming and has the advantages that such systems 

normally include modularity and ease of viewing by people. 

Here we would describe two views of this kind of structure – Semantic Nets & Frames. 

Semantic Nets 

 There are different approaches to knowledge representation include semantic net, frames, 

and script. 

 The semantic net describes both objects and events. 

 In a semantic net, information represented as a set of nodes connected to each other by a 

set of labeled arcs, which represents relationships among the nodes. 

 It is a directed graph consisting of vertices which represent concepts and edges which 

represent semantic relations between the concepts. 

 It is also known as associative net due to the association of one node with other. 

 The main idea is that the meaning of the concept comes from the ways in which it 

connected to other concepts. 

 We can use inheritance to derive additional relations. 



 

 

Figure: A Semantic Network 

Intersection Search Semantic Nets 

 We try to find relationships among objects by spreading activation out from each of two 

nodes. And seeing where the activation meets. 

 Using this we can answer the questions like, what is the relation between India and Blue. 

 It takes advantage of the entity-based organization of knowledge that slot and filler 

representation provides. 

Representing Non-binary Predicates Semantic Nets 

 Simple binary predicates like isa(Person, Mammal) can represent easily by semantic nets 

but other non-binary predicates can also represent by using general-purpose predicates 

such as isa and instance. 

 Three or even more place predicates can also convert to a binary form by creating one 

new object representing the entire predicate statement and then introducing binary 

predicates to describe a relationship to this new object. 

Conceptual Dependency 

Introduction to Strong Slot and Filler Structures 

 The main problem with semantic networks and frames is that they lack formality; there is 

no specific guideline on how to use the representations. 

 In frame when things change, we need to modify all frames that are relevant – this can be 

time-consuming. 

 Strong slot and filler structures typically represent links between objects according to 

more rigid rules, specific notions of what types of object and relations between them are 

provided and represent knowledge about common situations. 

 Moreover, We have types of strong slot and filler structures: 

1. Conceptual Dependency (CD) 

2. Scripts 

3. Cyc 

Conceptual Dependency (CD) 

Conceptual Dependency originally developed to represent knowledge acquired from natural 

language input. 

The goals of this theory are: 

 To help in the drawing of the inference from sentences. 

 To be independent of the words used in the original input. 

 That is to say: For any 2 (or more) sentences that are identical in meaning there should be 

only one representation of that meaning. 

Moreover, It has used by many programs that portend to understand English (MARGIE, SAM, 

PAM). 



Conceptual Dependency (CD) provides: 

 A structure into which nodes representing information can be placed. 

 Also, A specific set of primitives. 

 A given level of granularity. 

Sentences are represented as a series of diagrams depicting actions using both abstract and real 

physical situations. 

 The agent and the objects represented. 

 Moreover, The actions are built up from a set of primitive acts which can modify by 

tense. 

CD is based on events and actions. Every event (if applicable) has: 

 an ACTOR o an ACTION performed by the Actor 

 Also, an OBJECT that the action performs on 

 A DIRECTION in which that action is oriented 

These are represented as slots and fillers. In English sentences, many of these attributes left out. 

A Simple Conceptual Dependency Representation 

For the sentences, “I have a book to the man” CD representation is as follows: 

 
Where the symbols have the following meaning. 

 Arrows indicate directions of dependency. 

 Moreover, The double arrow indicates the two-way link between actor and action. 

 O — for the object case relation 

 R – for the recipient case relation 

 P – for past tense 

 D – destination 

Primitive Acts of Conceptual Dependency Theory 

ATRANS 
 Transfer of an abstract relationship (i.e. give) 

PTRANS 

 Transfer of the physical location of an object (e.g., go) 

PROPEL 

 Also, Application of physical force to an object (e.g. push) 

MOVE 

 Moreover, Movement of a body part by its owner (e.g. kick) 

GRASP 

 Grasping of an object by an action (e.g. throw) 

INGEST 

 Ingesting of an object by an animal (e.g. eat) 

EXPEL 

 Expulsion of something from the body of an animal (e.g. cry) 

MTRANS 

 Transfer of mental information (e.g. tell) 

MBUILD 

 Building new information out of old (e.g decide) 

SPEAK 



 Producing of sounds (e.g. say) 

ATTEND 

 Focusing of a sense organ toward a stimulus (e.g. listen) 

There are four conceptual categories. These are, 

ACT 
 Actions {one of the CD primitives} 

PP 

 Also, Objects {picture producers} 

AA 

 Modifiers of actions {action aiders} 

PA 

 Modifiers of PP’s {picture aiders} 

Advantages of Conceptual Dependency 

 Using these primitives involves fewer inference rules. 
 So, Many inference rules already represented in CD structure. 

 Moreover, The holes in the initial structure help to focus on the points still to established. 

Disadvantages of Conceptual Dependency 

 Knowledge must decompose into fairly low-level primitives. 
 Impossible or difficult to find the correct set of primitives. 

 Also, A lot of inference may still require. 

 Representations can be complex even for relatively simple actions. 

 Consider: Dave bet Frank five pounds that Wales would win the Rugby World Cup. 

 Moreover, Complex representations require a lot of storage. 

Scripts 

Scripts Strong Slot 

 A script is a structure that prescribes a set of circumstances which could be expected to 

follow on from one another. 

 It is similar to a thought sequence or a chain of situations which could be anticipated. 

 It could be considered to consist of a number of slots or frames but with more specialized 

roles. 

Scripts are beneficial because: 

 Events tend to occur in known runs or patterns. 

 Causal relationships between events exist. 

 Entry conditions exist which allow an event to take place 

 Prerequisites exist for events taking place. E.g. when a student progresses through a 

degree scheme or when a purchaser buys a house. 

Script Components 

Each script contains the following main components. 
 Entry Conditions: Must be satisfied before events in the script can occur. 

 Results: Conditions that will be true after events in script occur. 

 Props: Slots representing objects involved in the events. 

 Roles: Persons involved in the events. 

 Track: the Specific variation on the more general pattern in the script. Different tracks 

may share many components of the same script but not all. 



 Scenes: The sequence of events that occur. Events represented in conceptual dependency 

form. 

Advantages and Disadvantages of Script 

Advantages 

 Capable of predicting implicit events 

 Single coherent interpretation may be build up from a collection of observations. 

Disadvantage 

 More specific (inflexible) and less general than frames. 

 Not suitable to represent all kinds of knowledge. 

To deal with inflexibility, smaller modules called memory organization packets (MOP) 

can combine in a way that appropriates for the situation. 

Script Example 

 

 It must activate based on its significance. 

 If the topic important, then the script should open. 

 If a topic just mentioned, then a pointer to that script could hold. 

 For example, given “John enjoyed the play in theater”, a script “Play in Theater” 

suggested above invoke. 

 All implicit questions can answer correctly. 

Here the significance of this script is high. 

 Did John go to the theater? 

 Also, Did he buy the ticket? 

 Did he have money? 

If we have a sentence like “John went to the theater to pick his daughter”, then invoking this 

script will lead to many wrong answers. 

 Here significance of the script theater is less. 



Getting significance from the story is not straightforward. However, some heuristics can apply to get 

the value. 


	UNIT-4
	Introduction to Nonmonotonic Reasoning
	Frames as Sets and Instances
	Frames as Sets and Instances (1)
	Other ways of Relating Classes to Each Other
	Slots as Full-Fledged Objects (Frames)

	Frame Example
	Semantic Nets
	Semantic Nets

	Conceptual Dependency
	Introduction to Strong Slot and Filler Structures
	Conceptual Dependency (CD)
	A Simple Conceptual Dependency Representation
	Primitive Acts of Conceptual Dependency Theory
	There are four conceptual categories. These are,
	Advantages of Conceptual Dependency
	Disadvantages of Conceptual Dependency

	Scripts
	Script Components
	Advantages and Disadvantages of Script
	Script Example



